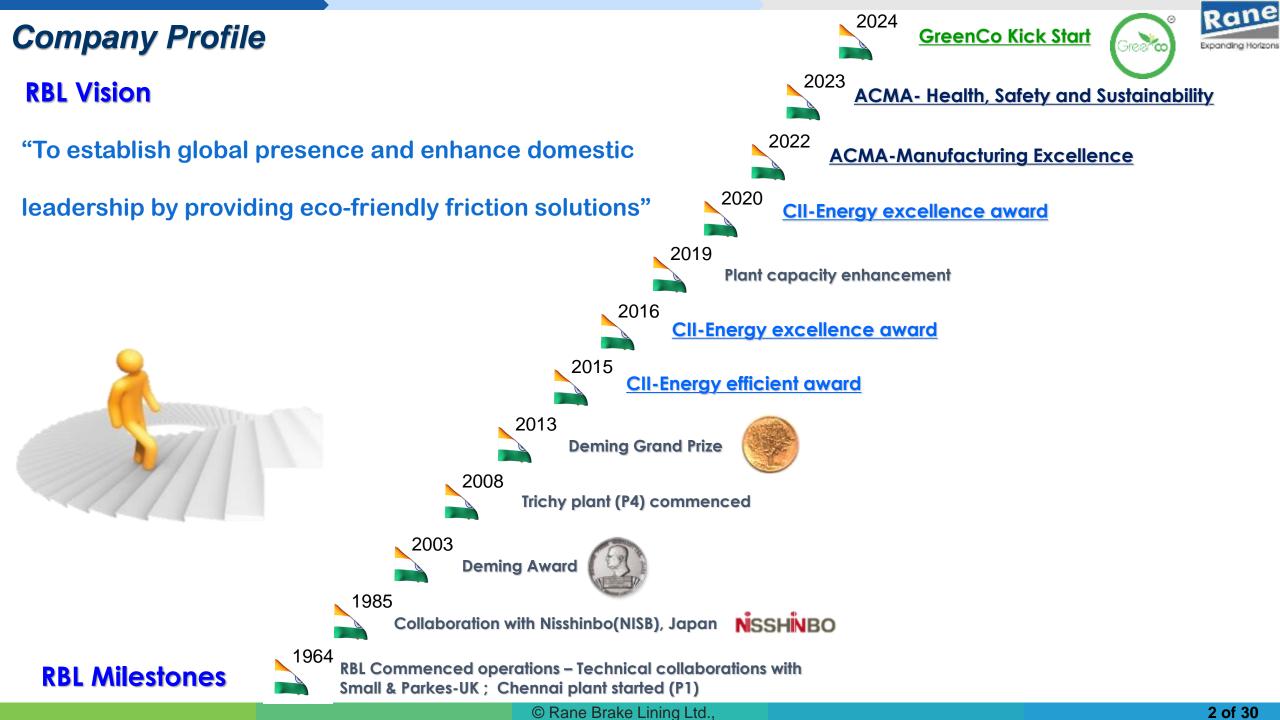
Welcomes to Juries And Participants **CII** National Energy Award For **Excellence in Energy Management - 2024**

M.Anbhazhagan

Manager - Maintenance

R.Karthick Asst.Manager - Maintenance


D.Sankar Prasath Senior Engineer - SHE

Plant Profile

Product segments & Customers

Trichy plant facility

Certifications

Clutch Facing

Passenger Car Disc Pad – 14.5 lacs/Month Commercial Vehicle Brake Lining – 1.50 lacs/Month

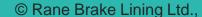
Rotem

Passenger Car Disc brakes

vembo

DELHI

an market

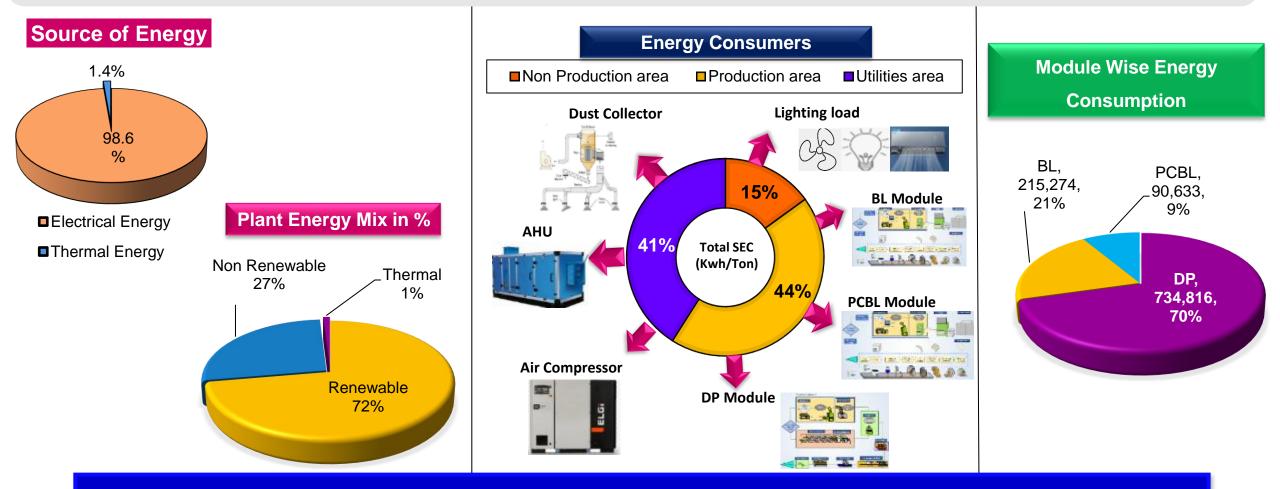

Passenger Car Brake Lining – 4.50 lacs/Month

IATF 16949:2016, ISO 9001:2015 ISO14001:2015, ISO 45001:2018

Mando Automotive Axles Limited

- Manufacturing 100% asbestos free Disc pads & Brake lining
- 72% Renewable energy utilized plant
- 1330 Saplings Planted Conventional & Miyawaki Method, which observes 20MT of CO2/Year

"State of Art Manufacturing Facility for Frictional Material"


2. Technology strength comparing with Competitors

Process Te	echnology	Product Technology	Robots & Kobots	
Wet blasting Process	Powder Coating Process	1D Barcode	6 Axis Robot	
	<image/>			
 Make : MACOHO - Japan Wet blasting is the use of an abrasive media and compressed air to achieve a desired finish on a chosen Ohly friction material company in India using wet blasting technology System operating in 80% energy efficiency 	 Make : PARKER - Japan Powder coating is a dry powder applied to a charged surface, creating a thicker coating in one application Energy Efficient : IR heater system with natural cooling Process 	 Make : COGNEX - India RBL is the 1st first Indian company to implement 1D barcode printing in friction Material Scanned 100% in RBL & Tier 1 & OEM Avoid Wrong pad fitment of in Caliper at Tier 1 	 Make : ABB - India Man to No-Man Technology We are the Benchmarking plant for implementing Robot technology in our group companies 	

3. Energy Consumption Overview

- ✓ In our factory premises ,we are using 98.6 % Electrical Energy and 1.4% Thermal energy
- \checkmark Total Renewable energy is 72% and Non Renewable is 27 %
- ✓ We are using 51 % Solar energy and 21% wind energy plant equipment's

Understanding the energy consumers helped in framing the strategies of High Energy equipment

Rane Expanding Horizons

3.2. Specific Energy Consumption in last 3 years

	Energy		Energy Performance index	
Year	consumption(kWh)	Production Tonnage	Unit/Ton	
FY 2021-22	1,07,01,258	3,058	3,799	
FY 2022-23	1,22,54,903	3,723	3,496	
FY 2023-24	1,26,09,535	3,920	3,167	

Production Tonnage Better 5,000 4,000 3,000 22% Increased 2,000 1,000 0 FY2021-22 FY2022-23 FY2023-24 UPT 🛛 3,058 3,723 3,920

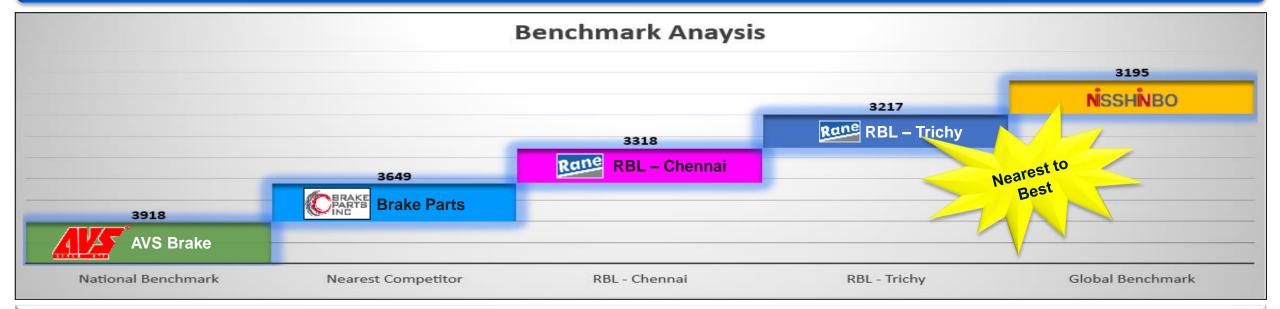
Process wise SEC

Segments	Specific Energy Consumption	2020-21	2021-22		2024-25 Short	2026-27 Mid-	2030 Long	% of reduction		5,000 r	Energy Performance Index Unit/Ton		iit/Ton
					term	term	term			4,500			
	Compressor -DP	1,162	1,104	1,049	996	916	762	27		4,000			
	Compressor - BL	1,045	993	944	896	825	812	14		3,500			
Utility	AHU	2,793	2,654	2,521	2,395	2,203	2,194	13	/Ton	3,000			
	Dust Collector	31,934	30,337	28,821	27,379	25,189	24,567	15	Units/	2,500		17	
	Cooling tower	17,418	16,547	15,720	14,934	13,739	12,687	19	5	2,000		No Red	
	Wet blasting	32,648	31,016	29,465	27,992	25,752	23,519	20		1,500		17% Reduced	
Due du etiene	Curing	216,728	205,892	195,597	185,817	170,952	159,914	18		1,000			
Production	Baking	84,990	80,740	76,703	72,868	67,039	63,687	17		500 0			7
	Scorching	25,160	23,902	22,707	21,572	19,846	18,054	20			FY2021-22	FY2022-23	FY2023-24
Total -KW	/H Reduction	413,879	393,185	373,526	354,849	326,461	306,196	18		UPT	3,799	3,496	3,167

Tons

Production tonnage increased 22% 🏫 and Energy consumption reduced 17% 🖊

3.3.Specific Energy Consumption in last 3 years


- Energy conservation group level CFT formed with select team members across all Plant. Team created "Technique matrix" based on best practices implemented over the years
- * Based on the approach for both production and the lift Construction of the store of the store

Process	VFD	Servo Motor	Motor Class conversat ion to IE3 or IE4	IR Heater	Process Optimizat ion 1.on/off control 2. Efficient devices	Efficiency improve ment	Idle time trip	Delta to star conversat ion	Motor size optimizat ion	PID control/T hyrister controller and Ceramic insulation	Process	VFD	Inverter	Class conversat ion to IE3 or IE4	Process Optimizat ion 1.on/off control 2. Efficient devices	LED	Efficiency improve ment	Power Factor Improve ment	Solar System
Mixing	х		Х	х	x	X	v	х	х	X	DG	х	Х	х	Х	x	х	v	x
Wet blasting	Х	x	х	x	X	V	V	х	x	Х	Compressor	٧	х	х	х	х	٧	х	X
Adhesive coating	v	х	x	v	х	v	v	х	x	x	Dust collector	v	х	v	х	x	v	х	x
Preform Press	v	х	x	x	x	x	V	х	x	x	АНИ	Х	х	x	V	х	x	х	x
Cure press	v	х	х	x	٧	V	V	х	x	V	STP & ETP	Х	х	x	V	х	x	х	x
ID Grinding	٧	х	V	х	x	V	V	х	٧	х	Cooling tower	Х	Х	х	V	х	٧	Х	x
OD Grinding	٧	Х	V	Х	X	V	V	٧	Х	Х	Air Conditioners	Х	V	Х	Х	х	Х	Х	Х
Chamfering	Х	Х	Х	х	X	V	V	Х	Х	Х	Lighting	Х	Х	х	V	٧	Х	V	V
Wear mark	Х	Х	Х	х	X	V	V	Х	Х	Х									
MSDM	Х	Х	Х	Х	X	V	V	Х	Х	Х									
Baking	٧	Х	V	х	X	V		Х	٧	V									
Auto Painting	٧	Х	Х	х	Х	Х	V	Х	Х	Х									
Powder coating	٧	х	Х	٧	٧	Х		х	x	Х									
Grinding m/c	٧	х	X	х	х	v	V	х	x	Х									
Scorching	х	x	X	x	٧	Х		х	x	V									
Shim bonding	х	x	x	x	x	x	V	х	x	x									

4.1.Information on Competitors, National & Global benchmark

- □ It's one of our regular practice that enable our team to increase the competitiveness
- Benefits of Benchmarking Identifies the best practices to set goals and targets and for our continuous improvement

Sustainable benchmark Success Story

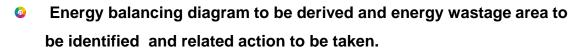
Vision on Energy management system to Continuously improve and efficient use of energy and commitment to environment
Energy cost focus on conserve energy, waste reduction, alternate technology, Fixed cost reduction & renewable energy usage
VOY target setting done based on best of best in previous year
Energy Sustenance Tracking done using IOT based Energy Management system
RBL Trichy is Second best industry benchmark focusing on reducing SEC year on year better than its competitors, however, accurate benchmarking can't be

4.2 Road map to achieve benchmark

Target Yrs.

2025-26

2900


2026-2

2758

SEC in KWh / Tonnage

- 20% power reduction through wastage derived from Material and water balancing drawing.
- Efficiency of running pumps and motors to be checked and replace as required..
- Chamfering operation elimination DP Process

- **Online adhesive idle interlock (Heater off) with conveyor**
- Compressor VFD installation
- IE3 motors instead of old / inefficient motors.
- Servo motor for PCBL Cure press.

2023-24

3217

- 7 Projects completed
- Heat loss reduction in oven through thermography method
- **O** No. of power saving projects identified 12

(Thyristor control for heaters in curing presses)

O Blower for MSDM instead of compressed air

- **Oracle States and Sta**
- VFD for curing machine main motor in DP & BL
- **OVER USE OF ADDALES O**
- **Orinding Machines combined Hydraulic Power pack in BL**
- Motor Optimization in Preform presses

© Rane Brake Lining Ltd.

Base year

2024-25

3056

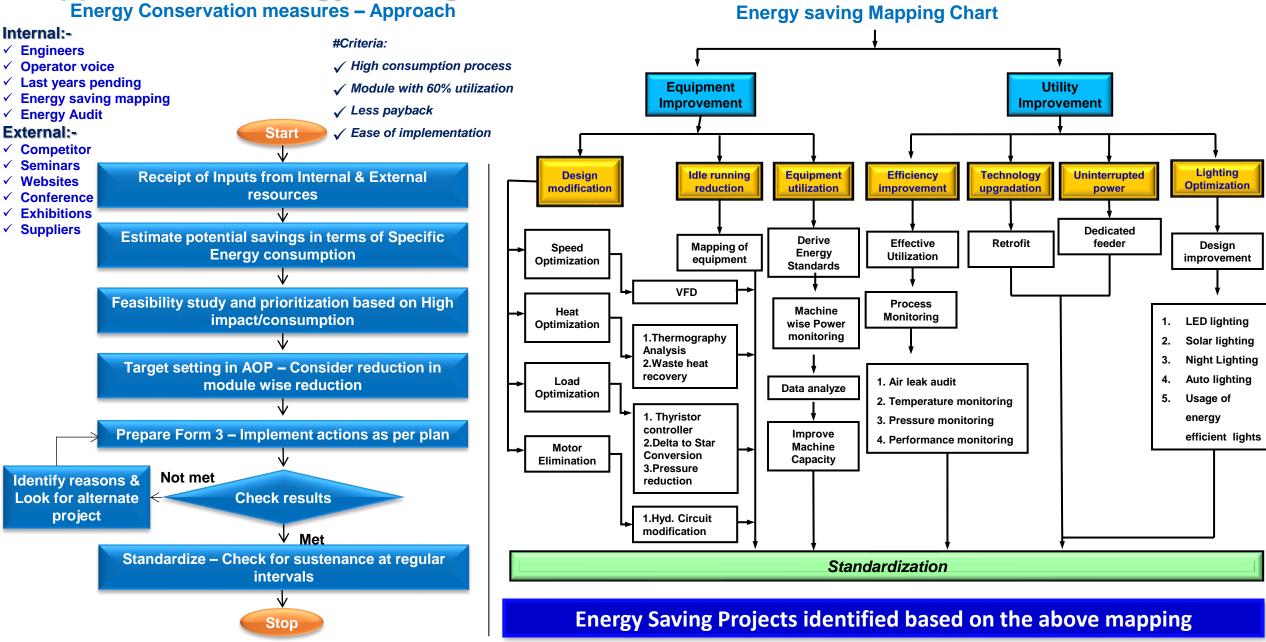
4.3 List of Major Encon project planned in FY 2024-25

S.No	Name of energy saving projects	Electrical savings (Million kWh)	Total Savings (Million INR)
1	VFD introduction for Finishing Machines	0.04	0.31
2	IE3 motor for Baking and dust collector	0.02	0.19
3	Thyristor for Heater in Baking process	0.02	0.15
4	Automatic power factor correction system	0.04	0.34
5	Cure press hydraulic motor ON time optimization	0.02	0.19
6	Lower HP motors for hydraulic press	0.07	0.53
7	Concept of Common power pack in finishing	0.09	0.77
8	Wet blasting heater On/off Optimization	0.05	0.43
9	Duct line modification in BL Module 657 Tco2	0.04	0.36
10	AC Energy saver in office area	0.01	0.12
11	LED Light in PCBL Mixing zone reduction	0.04	0.30
12	BLDC Fans in Shop floor	0.03	0.22
13	Energy efficient Air Compresser -3 nos	0.23	1.84
14	Idle off in Shop floor cure machines	0.02	0.13
15	Pressure optimization in pneumatic circuit	0.02	0.19
16	Joint elimination in pneumatic circuit	0.03	0.26
17	Elimination of Hydraulic motors - Finishing machines	0.05	0.44
18	Servo motor for PCBL Cure press	0.05	0.37

Idea given by Operator

Idea given by Supervisor

No of Projects :27nos


Zero Investment ideas :13

2024-25 : Energy saving projects identified and potential cost saving of ₹ 7.13 Million

5. Approach on Energy saving initiatives

5. Energy Saving projects implemented in last three years

Consistent increase in investment towards energy efficiency and greener technologies showcases our commitment towards a greener tomorrow

2021-24 : 93 Energy saving projects implemented and cost saving of ₹26 Million achieved in the last 3 years

© Rane Brake Lining Ltd.,

5.1 List of Major Encon project implemented in FY 2021-22

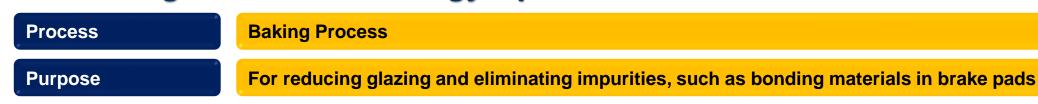
S.No	Name of energy saving projects	Investments	Electrical savings	Thermal savings	Total Savings	Payback period
		(INR Million)	(Million kWh)	(Million Kcal)	(INR Million)	(in months)
1	Elimination of electrical conveyors in BL cure press	-	0.01	-	0.07	0.00
2	Axial fan AHU(Innovative concept of converting centrifugal fan with Axial flow fan concept implemented for AHU)	0.15	0.02	-	0.02	10.30
3	Riveting machine motor idle run switched off by providing timer	0.00	0.01	-	0.07	0.20
4	Thyristor for Baking ovens	0.10	0.04	-	0.26	4.50
5	Adhesive -2 Oven preheating and post heating chamber height reduction by 400mm	-	0.07	-	0.49	0.00
6	18 W LED tube lights in Preform and Mixing zone	0.16	0.04	-	0.32	6.10
7	Switching off cooling tower fan using temperature controller	0.02	0.00	-	0.01	14.40
8	Motor running hours modification through PLC in Preform press	-	0.07	-	0.54	0.00
9	Interlock between lodgie main motor with dust collector	-	0.00	-	0.02	0.00
10	Switching off panel AC by interlocking with HPP motor for GG04& GG05	-	0.00	-	0.02	0.00
11	VFD for Preform press	1.44	0.15	-	1.08	15.90
12	Temperature Optimization in AHU system	-	0.07	-	0.53	1.60
13	Preform press Cycle time optimization	-	0.03	-	0.19	0.00
	Sum of Total	1.86	0.50	0.00	3.61	53.00

2021-22 : 32 Energy saving projects implemented and cost saved ₹ 5.8 million with investment of ₹1.9millon

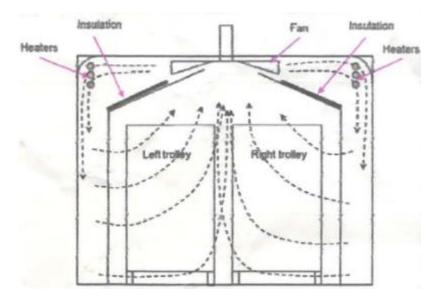
5.2 List of Major Encon project implemented in FY 2022-23

S.No	Name of energy saving projects	Investments	Electrical savings	Thermal savings	Total Savings	Payback period
3.110	name of energy saving projects	(INR Million)	(Million kWh)	(Million Kcal)	(INR Million)	(in months)
1	Provide new air line for preforming and reduce air Pressure from 6 bar to 2 bar in cure press line 01 paranol line	0.00	0.01	-	0.10	0.00
2	Idel Timer for ejection system - DP Cure press	0.00	0.04	-	0.30	0.00
3	Combining IDG and IAL machine power pack.	0.08	0.01	-	0.11	8.20
4	DP Curing conveyor integration	0.13	0.01	-	0.10	14.80
5	VFD For preform machine- 13 no's	0.61	0.17	-	1.38	5.30
6	Duct line modification in BL mixing process	0.09	0.06	-	0.45	2.40
7	Baking Oven trolley Conversion	0.08	0.09	-	0.69	1.30
8	VFD for baking Oven - 15 no's	0.98	0.07	-	0.56	21.00
9	LED High bay light replacement	0.13	0.03	-	0.21	7.20
10	Idel Timer for Panel cooler AC	0.00	0.02	-	0.16	0.00
11	Drive & Driven Pulley ratio modification in baking oven	0.01	0.03	-	0.22	0.70
12	Reduce energy consumption by providing Solenoid valves on main headers of Compressed air line & switching off during non production time.	0.03	0.02	-	0.18	2.10
	Sum of Total	2.12	0.56	0.00	4.45	5.71

2022-23 : 24 Energy saving projects implemented and cost saved ₹ 4.45 million with investment of ₹2.1millon



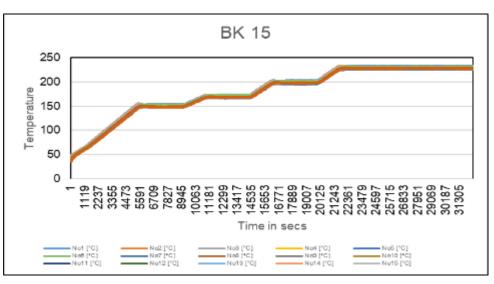
5.3 List of Major Encon project implemented in FY 2023-24

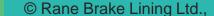

S.No	Name of energy saving projects	Investments	Electrical savings	Thermal savings	Total Savings	Payback period
		(INR Million)	(Million kWh)	(Million Kcal)	(INR Million)	(in months)
1	Compressed air usage optimization by switching off 125 cfm compressor	0.13	0.06	-	0.51	2.92
2	Temperature optimization in DP Preform Zone	0.00	0.02	-	0.18	0.00
3	Switching on Air line in od finishing -1, msdm 1 & 2 only when motor is on by providing solenoid valve	0.02	0.02	-	0.13	2.11
4	VFD installed in 16000 Cfm dust collector	0.04	0.03	-	0.23	1.84
5	Auto batching 2 Remote control switch fixed for 8000 Cfm dust collector motor switch off idle run	0.00	0.02	-	0.13	0.14
6	LED light replacement in DP Mixing	0.12	0.05	-	0.37	3.89
7	Idle time reduction in Preform Press -Motor running hour optimization through PLC program		0.01	-	0.08	0.00
8	Conveyor idle off in scorching machine	0.00	0.04	-	0.33	0.00
9	Duct line modification in BL Line -01 finishing process	0.10	0.08	-	0.62	1.90
10	Wet blasting heater switch off during non production time	0.00	0.03	-	0.28	0.00
11	IE3 motor for Baking and Dust collector	0.17	0.02	-	0.14	13.85
12	Capacity improvement in Powder coating process from three/product/ row to four/product/row	0.00	0.08	-	0.55	0.00
13	Continuous grinding and grooving system instead of manual type	2.00	0.35	-	2.80	9.20
14	Energy loss reduction through thermography study	0.02	0.02	-	0.17	1.24
15	2 degree offset in AHU System	0.00	0.08	-	0.62	0.00
16	Cartridge heater length optimization in BL Module	0.00	0.03	-	0.27	0.00
17	Motor HP reduction in BL dust collector	0.13	0.04	-	0.30	4.92
18	Baking Oven energy optimization	1.00	0.26	-	2.08	5.80
	Sum of Total	3.73	1.24	0.00	9.79	47.81

2023-24 : 37 Energy saving projects implemented and cost saved ₹ 4.54 million with investment of ₹2.78millon

5.4. Baking Oven Motor Energy Optimization

Background of the Problem


Observation


- Temperature is maintaining as per the specification
- Blower motor 15Hp is continuously running to maintain the uniform temperature
- Heating load 36 kw

- Oven process contributes to 32 % of plant energy consumption
- Baking comprises of Heating load and a circulation fan (inductive load)
- Nearly 16 ovens available for baking process with an average consumption of 1.45Lac
 Kwh per month

Process Condition:

Cycle	Туре	Temp / Time
Cycle -1	Ramp	150 ° C @ 90 mins
Cycle -2	Soak	150 ° C @ 60 mins
Cycle -3	Ramp	170 ° C for 30 mins
Cycle -4	Soak	170 ° C @ 60 mins
Cycle – 5	Ramp	200 ° C @ 30 mins
Cycle - 6	Soak	200 ° C @ 60 mins
Cycle - 7	Ramp	230 ° C @ 30 mins
Cycle -8	Soak	230 ° C @ 180 mins

5.4. Baking Oven Motor Energy Optimization

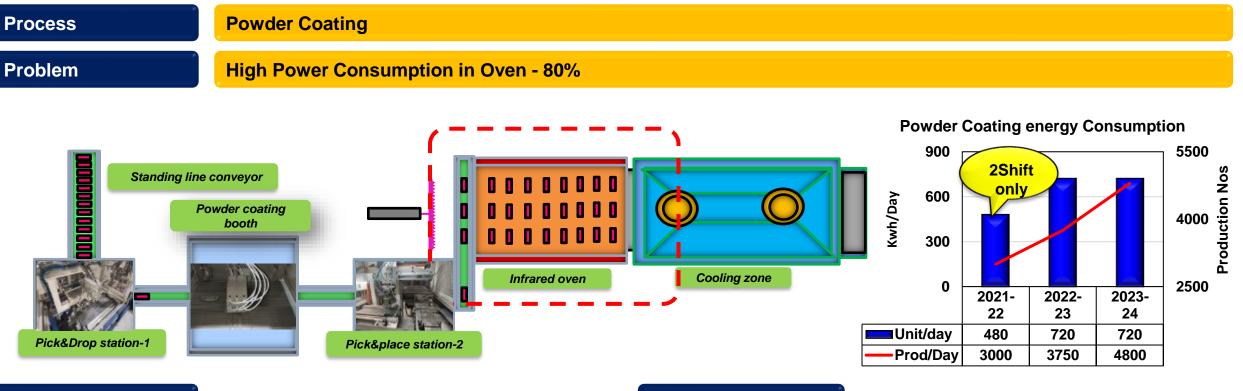
Action

 \geq

 \geq

Initial trial planned

VFD Main Contactor Jam Div: Sec Ekwer Set Speed-Ramp BK 15 oven taken for trial since it has PLC Safety Temperature: Blower Set Speed-Dwo VFD Connected to vary the blower RPM instead of Star-delta Starter imperature Tolerence (+ re Tolerence (**Dual Speed** Program done in PLC for Dual \mathfrak{q} Setting in HMI **Benefits:** Raise Fault Div 50Hz, 1600 RPM) & Low speed (eed Ok Delay Implementation and Horizontal deployment of the project for Blower CFM 10,000 during ram NENU. 16 baking ovens resulted in **Results** Energy saving of 2.6 lacs Kwh per annum ۲ Motor Power @ 50 HZ ۲ ₹20.8lacs per annum cost Saved. M h / Saving (Kwh) 185Tons of CO2 Emission reduced 3 +0.730 ongie opeeu Blower @ full speed +0.973 mat +0.973 120.2 Kwh (Tex) E+0.547k during ramping & + +0.237 tan+ +0.238 5.931x Soaking) 6.401k 29.7 Kwh / cycle **Dual Speed** Blower @ full speed 11.3 Kw 2.34 Kw 90.5 Kwh during ramping & low speed in Soaking)



Maintenance Setting Screen

eater Contactor Jam Div.

6.Innovative Projects implemented

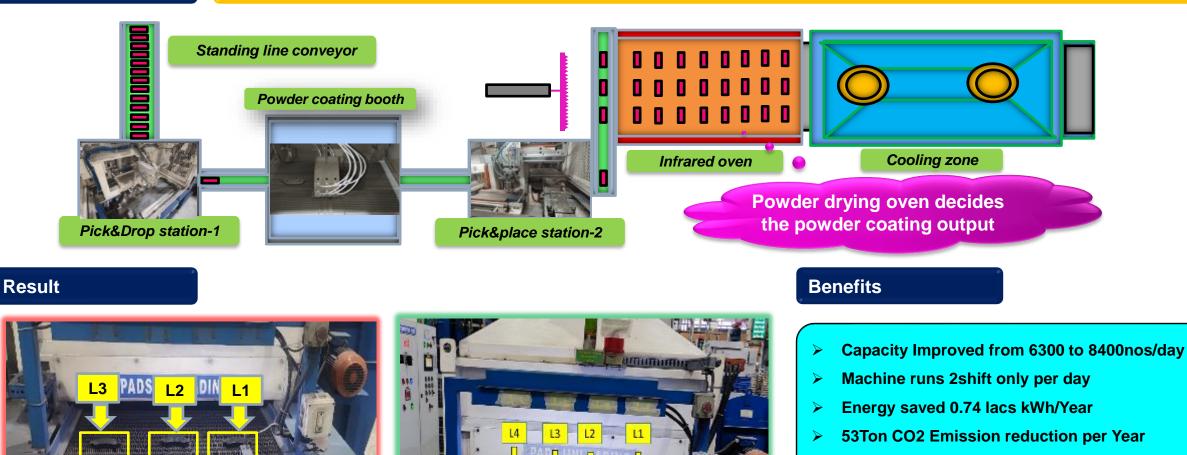
6.1. Efficiency Improvement in Powder Coating Process

Observation

- Machine Capacity 6300nos/day,
- Customer demand 4800nos/day,
- Production planned 1600nos/Shift
- > So machine runs in all the 3 shifts

Root cause

- Machine Under Utilization
- 1600nos runs against the capacity of 2100nos/Shift



6.1. Efficiency Improvement in Powder Coating Process

Action

Increase the Machine Capacity by increasing the No. of cavities from 3 to 4

- > 2 manpower Eliminated
- Energy Cost saved 5.5lacs/Year

Before

After © Rane Brake Lining Ltd.,

6.2. Continuous Grinding Machine

Machine

- Problem
- Observed
- Root cause
- Action
- Before Rough grinding
- Hydraulic Cylind down movement
- Bed returns idle

- :- Grinding Process
- :- Grinding Machine & Dust Collector Idle time High
- :- Return stroke comes idle

Pall Sarow Drive used for Crinding Red Movement

	Energy Consumption Study				
Description	Existing Grinding Machine	Continuous Grinding Machine			
Dust Collector Motor	15kW	15kW			
Hydraulic motor	7.5kW	0.5kW (Servo motor)			
Final & Rough Wheel	7.5kW	7.5Kw			
Bed Drive Motor	12.5kW	3.3Kw			
Total power Consumption/ Day	1026kWh/Day	749kWh/Day			
Cycle time	92 Sec@ 18 Cavity	4.0Sec @ 2 cavity			
Plan / Shift	3,200 no's / shift	6,750 no's / Shift			
Capacity	2,60,000 no's / month	5,26,500nos / Month			
Units Per Pad	0.11units / pad	0.04units / pad			

Benefits:

- **Specific Energy Saved 3.5 lacs Kwh per Annum**
- **Energy Cost saved 28 Lacs per Annum**
 - 250 tons of CO2 Emission reduction per Annum

7a.Utilisation of Renewable Energy sources

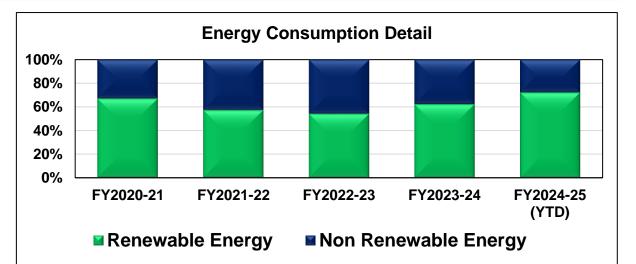
Renewable energy generation, utilization and % of Overall Energy consumption – Onsite

Year	Source (Solar Wind,etc.,)	Installed Capacity in MW	Capacity addition after FY 2021	Total Generation (million kWh)	Share % w.r.t to overall energy consumption
FY 2021-22	-	-	-	-	-
FY 2022-23	-	-	-	-	-
FY 2023-24	Solar (New Plant),Trichy factory premises	1.05	1.05	1.43	13.9

This 1.05MW solar plant produces 1.60Million units per annum

Area	Туре	Number of panels	Capacity	
Ground Floor	Ground Mount	1160 no's	600KW	
PCP (Disc pad)	Roof top	590 no's	260KW	
PC Brake Lining	Roof top	234 no's	120KW	
CV Brake Lining	Roof top	132 no's	70KW	
Tota	al	2116 no's	1050KW	

Renewable energy generation, utilization and % of Overall Energy consumption – Offsite


Year	Source (Solar Wind, etc.,)	Total offsite Installed capacity (MW)	Capacity addition (MW)	Total Generation (million kWh)	Share % w.r.t to overall energy consumption
FY 2021-22	RBL own solar ,Solar and Wind Group captive	3.56	-	4.74	45.93
FY 2022-23	RBL own solar ,Solar and Wind Group captive	3.91	0.35	5.2	50.45
	FY 2023-24 RBL own solar ,Solar and Wind Group captive		0.65	6.1	58.8

72% of(Onsite + Offsite) energy requirement of RBL, Trichy is met through Renewable Energy sources

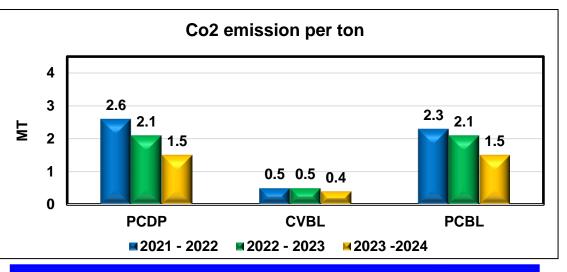
- Solar generation saving for the year 2021-24 2.05cr Kwh (INR 8.05 Cr saving)
- This has resulted in reduction of 13,971 MT of Eq. Co2

saving compared to power from traditional sources - which is

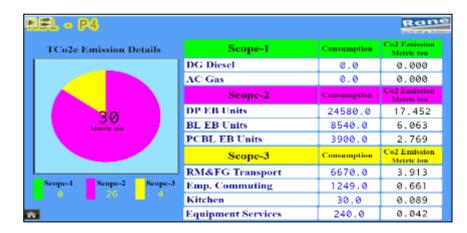
equivalent to planting 6.93lacs trees

Year on year renewable energy increased from 62.22 % to 72.2%

© Rane Brake Lining Ltd.,


8.GHG Inventorisation

Rane Expanding Horizons


Information on GHG Inventorisation and public disclosure

S.no	Scope	Emission Source	Type of Fuel
1		Diesel Generator -	Diesel
2	Scope – 1	AC	R410 A, R 407 C, R 22, R 32
3		Fire Extinguisher	Co2
4	Scope – 2	Grid	Electricity
5		Up stream	
6		Transport and Distribution – Raw material and Consumable transportation	Diesel
7		Capital Goods- Purchase of New machinery	Diesel
8		Fuel Energy – Kitchen	LPG
9		Business Travel – Employee travel	Diesel
10	Scope – 3	Purchased goods and Services – Equipment services	Diesel
11		Employee Commuting – Employee transportation	Diesel
12		Down Stream	
13		Transportation – FG Distribution	Diesel
14		Leased Facility	Electricity
15		Waste Disposal	Diesel

Emissions intensity of last three years (2021-24)

62% of intensity emission was reduced in past three years

Real time monitoring of GHG emission in shop floor through Customized Digital Software

8.GHG Inventorisation

Target (short term/ long term) for GHG emission reduction and action plan to be mentioned

Target

Carbon Neutral : 2028 through utilization of Renewable energy ,Carbon Sequestration & Energy saving projects

Net Zero : 2038 through Converting all Diesel equipment's to electric or CNG

	rt Term - 2025	Mid Term 2026 - 2028		Long Term 2038			
Project	Emission Reduction(Mt)	Project	Emission Reduction(Mt)		Project	Emission Reduction(Mt)	
1. Install 1 MW solar plant	1402	1.Green initiatives through 65% contribution suppliers	100	to	Conversion of diesel bio diesel for Diesel	5	
2 Increase Green belt coverage from 40 % to 65 %	4	2. Installation of Group captive of 1 MW solar plant	1400		Reduction in SEC by		
3. Reduction in SEC 10 %	150	<i>3. Increase employee commuting from 71 % to 97 %</i>			%	300	
<i>4.Engaging supplier for Milk Run concept to supply raw materials</i>	350	4. Achieve Carbon Neutrality	Zero emission in Scope -1 & 2	3.	Net Zero	Zero emission in Scope -1 ,2 & 3	

9. Waste utilization and management in last three years (2021-24)

SI no	Type of waste	Nature	Mode of Disposal
1	Colid	Hazardous	Recycling and co processing in cement industry
2	Solid	Non Hazardous	Recycling and reuse as replace of virgin material
3	Liquid	Process	Recycling and Reuse in process
4	Liquid	Domestic	Recycling and Reuse in Garden

Liquid waste Management

THE NAME

Solid waste Management

Hazardous & Non Hazardous Waste Generation & Disposal								
S. No.	Waste Details	UoM	2021 - 2022	2022 - 2023	2023 - 2024	Disposal method		
	33.1 - Empty barrels /containers/liners contaminated with hazardous chemical/wastes	MT	3.62	3.8	2.7	Recycling		
2	5.1 - Used or spent oil		1.2	0.6	1.4			
3	35.1 - Exhaust Air or Gas Cleaning residue		524.77	650.67	658.13	Co – processed in		
4	12.5 - Phosphate sludge	MT	4	8	8.98	cement industry as an alternate fuel		
5	21.1 - Process waste, residues and sludge's		29.71	30.19	<u>59.13</u>	an allemale luer		
6	Non hazardous waste (Plastic, wood & metal)	МТ	149	140	136	Recycling		

	Waste Utilization as Fuel									
_				Quantity		001/	Waste as percentage of total fuel			
S. No.	Type of waste	UoM	2021 - 2022	2022 - 2023	2023 - 2024	GCV MJ/Kg				
3	35.1 - Exhaust Air or Gas Cleaning residue		524.77	650.67	658.13	62	86% fuel & 14 % Ash			
4	12.5 - Phosphate sludge	МТ	4	8	8.98		02 % Eucl % 7			
	21.1 - Process waste, residues and sludge's		29.71	30.19	59.13	20000	93 % Fuel % 7 % Ash			

Solar

Rane Expanding Horizons

9. Waste utilization and management in last three years (2021-24)

Our waste management was mainly through the incorporation of **3***R* **technologies**

- ✓ *Reduce* :Waste generation was reduced through QC story concept.
- Reuse: 12 15 % of the grinding waste was reused by replacing of virgin material in our process and 88 % of waste are reused as an alternate fuel in cement industry.

Recycle: 22 % of the waste was recycled and reused for various industries.

Achieved Results

Reduction in Hazardous Waste Raw Material Procure Vs Waste in % 50 40 30 20 10 0 PCDP CVBL PCBL 2021 - 2022 20.5 13.5 41.4 13.7 21.1 31.1 2022 - 2023 17.6 24.1 2023 - 2024 12.3

Case study on preform rejection

Summary Projects

SI	Project Actions Reduced /	l /Year		
no	Project	Actions	From (Mt)	To (Mt)
1	Reduce Preform weight	2	13	0
2	Reduction in preform rejection	4	18	5
3	Reduction of blister issues	5	45	30
4	Reduction in block sticking issues	1	12	7
5	Reduction in paint sludge	4	1.2	0.6

© Rane Brake Lining Ltd.,

10. Green Supply Chain Management

Environment Sustainable Policy Rane roella

RANE BRAKE LINING LIMITED – P4

ENVIRONMENT SUSTAINABILITY POLICY

Sustainability Policy

We at Rane Brake Lining Limited believes that adopting sustainable practices in all our operations is not only a business imperative for us but provides us with a competitive advantage in long run. We integrate the economic growth, social responsibility and climate changes with the objective of business values and operations to meet the expectations of our customers, employees, partners, investors and society.

The principles we follow are;

- Integrating sustainability practices to mitigate climate change risk to our business. Ensuring that relevant environmental and social aspects are embedded in our business decisions and goals
- Adopt 3R (Reduce, Reuse and Recycle) for all types of wastes towards reduction of impact on consumption of materials and environmental friendly disposal inline with regulatory requirements or industry best practice
- Strive to achieve carbon neutral by focusing on energy efficiency projects and use of renewable energy
- Focus on water conservation, rain water harvesting to become water positive through continuous improvements in process
- Provide and maintain a clean, healthy and safe work environment for employees, customers and the community
- Making sustainability personnel to encourage employees and society at large to adopt sustainable practices
- Building sustainable value chain by encouraging and supporting our suppliers and dealer partners to adopt sustainable practices
- Continual improvement in process, product and peoples

We endeavor to be a model location by imbibing green features in our operations

Plant Head

Rane Brake Lining Limited

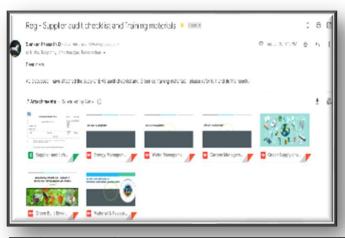
Trichy Plant

Procurement RM recycling to avoid the consumption & Green initiatives

Production Waste Management Water Management **Energy Management**

Packing Returnable packing to increase the usage cycle and reduce decompose

Logistics Avoid multiple usage (Fuel) Pollution control Green energy


Objectives	Action plan	Benefits
Identification of the supplier 5 of 56 key suppliers identified to work environmental contribution		Awareness and understanding of the supplier
Training and awareness programEducate and engage the suppliers for green production by 2027		Improve the greener production by supplier
	100% restriction of Hazardous materials by 2027	
Vendor Green procurement	Procurement of 100% eco friendly materials	Avoid Land and air pollution
	100% recycling of raw materials	
	30 % Reduction of wastes by 2027-28	
Vendor Green production	30% Reduction of energy consumption 2028-29	Avoid the pollution control Energy consumption reduction
	Reduction of CO_2 emission to control the usage of transport and electricity 2028-29	Cost saving
Vendor's Green packaging	75% usage of returnable packing (Plastic tray or PP box)	Reduction of wastages
Vendor's Green transportation	Reduce the consumption of diesel in the transport by the usage of EV	By optimizing the vehicle utilization to benefit the cost saving & air pollution
Audit selection / Evaluation criteria	Green supply chain requirements include in the audit check sheet	Improve Green environment

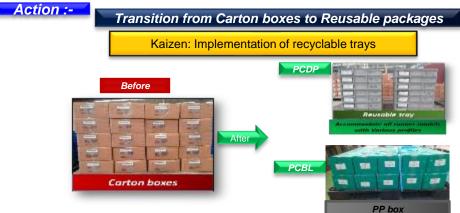
Date:- 12th June 2024

10. Green Supply Chain Management

Knowledge Sharing for suppliers through mails on green business

Green business Training for suppliers by RBL through external trainers

S.No	Supplier Name	Name of energy saving projects	Investment s (INR Million)	Electrical savings (Million kWh)	Thermal savings (Million kWh)	Total Savings (INR Million)	Payback period (in months)
1	premier engineering works	Conventional light to LED	0.06	0.01	0.0	0.06	12.00
	Esterkote pvt limited	Motor HP reduction in Forming press	0.03	0.01	0.0	0.06	6.00
3		Individual Solenoid valve in air line	0.08	0.01	0.0	0.06	16.00
4	Kumarasamy	Real time clock for dust collector on/off during break time and Automatic power factor controller	0.05	0.01	0.0	0.06	10.00
5		IE3 energy efficient replace to energy efficient motor	0.2	0.00	0.0	1.2	2.00
6	sun industries	VFD for hydraulic Pressing every cycle completion and Heater modification	0.2	0.05	0.0	0.3	8.00
7	Inductrial	Cutting-edge Mc Motor Sequence modification	0.24	0.00	0.0	0.72	4.00

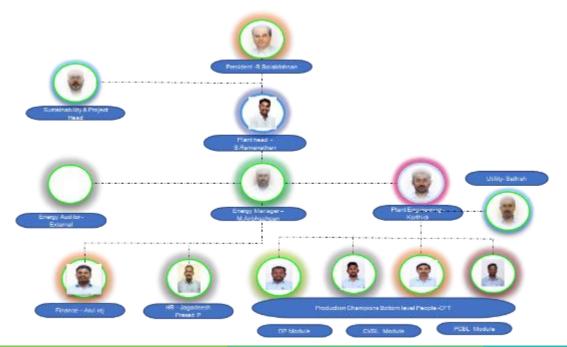

Appreciation given to suppliers for implementing energy kaizens in their industry by RBL

Case study :

Projects implemented in Supply chain for Eliminating Wooden & Cartons packaging


✓ Returnable packing implemented for reuse purpose

Due to returnable packing environmental sustainability improved by avoid using carton boxes


© Rane Brake Lining Ltd.,

11. EMS system and other requirements

Sustenance Tracking through Energy monitoring system

Energy management Cell

Review System

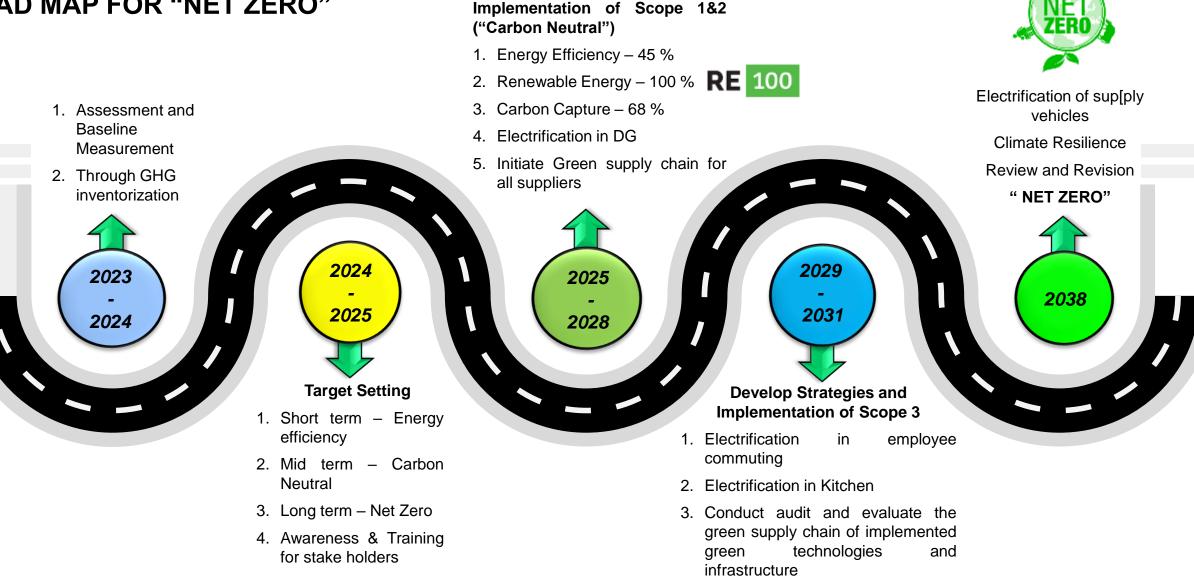
Management cell	Roles & Responsibility	Review mechanism
President	Overall review and Approval	Monthly , Quarterly & Annual
Sustainability & Project Head	Project confirmation & Project cost approval	Monthly
Plant - Head	Cost review and Project discussion	Daily
Energy manager	KWH - Tracking	Daily
Energy Advisor	External audit team	Qtr.
Maintenance Champions	Review the Production team	Daily
Production champions	Utilize the power without loss	Daily
Plant Finance	Cost review and Estimate approval	Daily
Plant HR	Training to employees	Daily
Utility Team	Daily monitoring and Energy saving projects	Daily

Learnings from CII Energy Award or Any Other Award Program

- •Learned beast from other automobiles sectors
- •Increased the % dependence on RE sources (such as Solar and wind)
- Interacted with may suppliers from energy sector
- •Learned about way forward for RE 100 and Net Zero action plan

Implementation of Green Co / ISO 50001 / IGBC rating

S.no	Description	Certification	Planned on	Investment					
1	Green co	Nil	2024-25		Work in progress				
Green Co (Green Co Current Assignment Status								
Online Registration by the Unit	Launch & Advanced training program by CII	Implementing & Preliminary data submission by the Unit	GreenCo Hand Holding & Pre- Assessment by CII	Final Assessment by external experts	Announcement of the rating level and communication to the unit	Feedback report by Cll	Annual sustenance review by CII		
Stage -1	Stage -2	010	Stage	Stage -5	Stage -6	Stage -7	Stage -8		
		Scheduled							
2	ISO 50001	during end of Sep'24	025-26	To be decided on 2025-26 AOP (AOP - Annual Operating Plan)					
3	IGBC rating	Nil	2025-26	To be decided on 2025-26 AOP(AOP - Annual Operating Plan)					


2

3

12.NET ZERO commitments

ROAD MAP FOR "NET ZERO"

Strategies

and

4. Monitoring and Reporting

Develop

Rane

Expanding Horizons

13. Awards & acknowledgement

Second Prize for Environment Protection and Management, from The Government of Tamil Nadu

QCC 3rd Position : ACMA Southern Region

Won the GOLD Award for Excellence in Manufacturing Large category on 2023

© Rane Brake Lining Ltd.

RANE BRAKE LINING LTD – Plant 4 Trichy

THANK YOU

M.Anbhazhagan, Manager - Maintenance

m.anbhazhagan@ra**neg**roup.com

R. Karthick, Asst. Manager - Maintenance

r.karthick@ra**neg**roup.com

9952949609

D.Sankar Prasath, Senior Engineer-HSE

d.sankarprasath@ranegroup.com

© Rane Brake Lining Ltd..